Nanostructured Materials for Optoelectronic Applications
نویسندگان
چکیده
منابع مشابه
Borazine materials for organic optoelectronic applications.
Borazine materials have been demonstrated to be a new class of multifunctional and thermally stable materials with high electron (10(-3) cm2 V(-1) s(-1)) and moderate hole (10(-4) cm2 V(-1) s(-1)) mobilities for applications in electroluminescent devices.
متن کاملHierarchically nanostructured materials for sustainable environmental applications
This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic ga...
متن کاملNanostructured Electrode Materials for Electrochemical Capacitor Applications
The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric d...
متن کاملOptoelectronic applications of LTMBE III-V materials
A review of the application of semiconductor layers grown at low substrate temperatures to ultrafast optoelectronics is presented. The films, grown by molecular beam epitaxy primarily around 200 °C and subsequently annealed, are demonstrated to have high resistivity, high mobility, an ultrashort carrier lifetime, and a high dielectric breakdown. This combination of properties makes the low-temp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Physica Polonica A
سال: 2010
ISSN: 0587-4246,1898-794X
DOI: 10.12693/aphyspola.117.786